Under normal circumstances, FL2 selectively severs microtubules at the cell’s leading edge which suppresses the rate and directionality of cell movement. However, when inhibited, FL2 causes cells to shift into a accelerated movement state.
Due to its significant impact on cell movement, MicroCures believes that the ability to silence FL2 activity has the potential to play an important therapeutic role in enhancing and accelerating tissue, nerve and organ repair. Based on this, the company is currently developing topical/local siRNA-based inhibitors of FL2 to promote the regeneration/repair of the cornea, skin, and cavernous nerve.